
International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

57

$62.5 US The Modeling and Implementation of Reliable

Mobile Agent Systems using Group Communication

Services

Alaa Eldeen Sayed Ahmed
Computer Engineering Department

Benha University
Shoubra-Cairo, Egypt

Rania Ramadan Abd El-dayem
Computer Engineering Department

Benha University
Shoubra-Cairo, Egypt

ABSTRACT

A mobile agent is a computer program that runs
autonomously on behalf of a user and travels through a certain
itinerary in a network of computers. When compared with
normal client/server architecture, mobile agent paradigm adds

up additional reliability problems since agents programs could
be totally or partially lost due to failures that come from bad
communication or computer agent's crash with the recent
increase of considering mobile agent in different E-World
applications, reliability is considered as a crucial issue to be
faced. Most of existing mobile agent systems considers check
pointing or replication as a mechanism in achieving reliable
and fault tolerant execution. In this paper we present new

model which employs the benefits gained from combing both
mechanisms to achieve reliable mobile agent execution. Our
model uses group communication services to avail different
essential issues such as agent’s synchronization to facilitate
the implementation the protocol. The proposed approach is
dynamic in the sense that it allows a flexible membership
mechanism to join or leave a mobile agent groups used in
achieving the reliable execution.

General Terms

Mobile agent, Distributed computing, Reliability et al.

Keywords

Mobile agent, fault tolerance, reliability, replication, check-
pointing, group communication.

1. INTRODUCTION
In this paper, we introduce The Modeling and Implementation
of Reliable Mobile Agent systems using group

communication services. Mobile agent is a computer program
that travels within a heterogeneous network of computer
systems. Mobile agent systems offer advantages such as better
performance, lower usage of network bandwidth and
asynchronous processing [1]. They can suspend their
execution on an arbitrary point and transport themselves to
another computer system. During this migration the agent is
transmitted completely, as a set of code, data, and execution

state. At the destination computer system, an agent’s
execution is resumed at exactly the agent point where it was
suspended before.

During the agent life cycle, there is a lot of unexpected errors
may occurs. These may include failure of the computer
running the agent or failure of networks nodes so tar the agent
is lost. The longer the mobile agent’ itinerary means higher
possibility of getting failures. Thus it is important to make a

mobile agent reliable. Reliable means the ability to overcome
the presence of failures. This requires a mechanism for

detecting the failures then recovery. As far as we know, most
of prior works have considered either check-pointing or
replication mechanism separately to achieve mobile agent
fault tolerance. In this paper we introduce a new approach that
combines the two mechanisms in an integrated fashion to
achieve the best of both.

A previous version of this paper introduced the basic concept
of proposed system and related membership and election

protocols [2]. Here, we extend our work by further discussing
and refining the concepts regarding the proposed membership
and election protocol and presenting failure detection and
performance data from a number of experiments; where we
measured the agent round trip time, also the experiments
insure the agent reliability even in case of crashes.

The paper is organized as follows. In section 2, related work
is described. In section 3 we present the definition of group

communication. The proposed system modeling is given in
section 4. The new protocol design assumption is presented
in section 5 then followed by Model Implementation and
results in section 6. Finally, section 7 introduces the
conclusion.

2. RELATED WORK
Reliable Fault tolerance services are implemented with
several techniques and methods. One of these models is called
Primary-Backup protocol. It is based on the use of multiple
servers where one of the servers is designated as the primary
and the others are designated as backups. [3]In this protocol
the client sends its request to the primary which executes the
request and sends back the result to the clients. The primary
Multicasts results to all backups in order to maintain

consistency. This procedure occurs with when each request is
processed. In case of primary failure, one backup take over as
the primary and inform the clients so that all future requests
should be sent to new primary. This model is server driven
model in which clients has no role in identifying the new or
the faulty primary [4]. This protocol is extended to become a
client active by having the clients to maintain an ordered list
of computers and uses it to detect failures then elect a new

leader or primary computer.

Reliable Fault-tolerant mobile agent execution must satisfy
two basic properties [5]: The non-blocking property which
ensures that the agent execution can make progress at any
time and exactly-once property which prohibits multiple
executions of the agent. Clearly, mobile agent applications
have need of an agent to be executed exactly once. For
example assume we have a mobile agent for buying a book

with the lowest price. The mobile agent should have the
exactly once property valid to be able to just buy only the

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

58

book with the lowest price. On the other hand, the non-
blocking is another important property that need to be valid
for the reliable mobile agent execution. For example, when a
mobile agent is launched, by its owner, it is expected to get
result.

Agent execution proceeds in steps, where a new step is
initiated whenever an agent migrates to the next node in its
itinerary. A step of an agent is defined to be the set of
operations performed by the agent while it visits this node. In
the execution model, resources are encapsulated in resource
managers. So each step may change the agent’s state as well
as the state of the local resources.

Now we give the definition of exactly-once. Assume the

agent is performing a task T through different stages. Let P(I)
be the number of nodes in the agent’s itinerary I=[N1, N2, ...,
NP(I)] and Si be the stage represented the node Ni (1 <= i <=
P(I)). Then the execution of an agent is defined to be exactly-
once if the agent executes stage Si before stage Si+1, 1<= i
<P(I), and each stage Si, 1<= i <= P(I), is executed exactly
once, independent of communication and node failures.

The non-blocking property ensures that the failure of an

infrastructure component (e.g., a machine, place, agent, or
communication link) does not prevent progress in the agent
execution. A blocking execution is undesirable because it can
lead the agent owner to potentially wait a long time for the
return of the agent.

To achieve fault tolerance mobile agent execution most of the
existing protocols use check-pointing, replication or mobile
group's mechanism.

Check-pointing is a technique for achieving fault tolerance. It
consists of periodically saving the state of the computation on
stable storage; in case of a crash, the computation is restarted
from the most recently saved state. The technique has been
developed for long running computations, e.g., simulations
that last for days or weeks, and run on multiple machines.
These computations are modeled as a set of processes
communicating by exchanging messages. There are two
famous protocols to implement check-pointing technique to

fault tolerant mobile agent in [6] [7]. These protocols assume
that no hardware failure occurs to maintain the log entries
because it can’t be recorded in permanent storage. Here
check-pointing can prevent the loss of the agent and ensures
the exactly once execution property but it survived from
blocking. Unfortunately, unreliable failure detection may lead
to a violation of the exactly-once execution property.

Another fault tolerance mechanism is replication. Replication

prevents the loss of the agent and avoids the blocking problem
by adding redundancy masks failures and enables the agent to
continue the execution despite failures. Without replication
the mobile agent migration leads to blocking, as a failure may
cause the loss of the agent. To prevent blocking, the agent at
any stage (Si) is sent to a set of places (Mi+1) at (Si+1), instead
of only one place. In other words, the place pj

i hosts the agent
replica aj

i of agent ai. There are two approaches to implement

replication temporal-replication-based (TRB) and spatial-
replication-based (SRB) approaches, as in [5] [8]. In general,
the disadvantages of replication is not guaranteeing the
exactly-once execution property while the advantages is
preventing the loss and blocking of the agent.

The last mechanism is mobile groups. Mobile groups were
presented as a mechanism for mobile agent reliable
coordination using group communication system. Group

communication systems enable mobile agents that share a

collective interest to identify themselves as a single logical
communication entity and are responsible for constructing a
group of coordinated replicated mobile agents. A mobile
group is an extension of the traditional concept of a process
group that can directly support migrating processes as

members of the group. With mobile groups, a migrating
process has the ability to change its location in the distributed
environment while belonging to a group. Mobile groups also
provide message delivery guarantees and a sort of virtual
synchrony. However, mobile groups provide these guarantees
despite the mobility of their members [9] and [10]. There are
two famous protocols to implement mobile group protocols to
fault tolerant mobile agent. These protocols concerned mainly

with group communication services implementation, but here
the mobile agent reliability is the most important issue. These
protocols don’t test with any common mobile agent platform
such as Voyager, Jade or Aglets but it tested with its own
implementation of agent system as java classes, and these
protocols can’t afford too many continuous failures. However
the approach in [9] is mostly conceptual and does not support
atomic and totally ordered message delivery. Also, they

require that each mobile agent installs a group view and
updates the group view whenever any mobile agent migrates.
This will result in high migration costs and is not practical.
Also the protocol in [10]suffers from total failure and handles

only coordinator failure not any other group member.

3. GROUP COMMUNICATION
Group communication middleware is a layer between the

communication layer and the layer that implements
replications. A group consists of a set of processes with an
identifier. Messages can be sent to all group members by
multicast the message referring to that identifier. Group
communication layer consists of a membership service and a
communication service. The communication service is tightly
integrated with the membership service so as to provide
properties that are particularly useful for reasoning of message

deliveries in the context of crashes, recoveries, wrong failure
beliefs, network partitions and mergers[9].Membership
service supports the group membership issues. A process may
join the group by invoking Join() operation, a process may
leave the group by invoking Leave() operation or by crash.
The membership service gives a view (a set of the currently
group members) of the group to each group member and
tracks the group membership and reports membership changes

to members (send a view change message describing the new
view to group members).The view change message generated
automatically as a result of join or leave or crash.

When a group g is created, every group member ai installs the
view vi

1 [9].After the initial view is installed, any modification
on the group members (join or leave) will result in new views
being installed, forming the sequence vi

1, vi
2, . . . , vi

n where n
represents a specific group view. This group needs to
implement group communication properties:

i. View Safety Properties:
Validity1: if an agent ai ∈ g installs a view vi

n (g), then ai∈ vi
n.

This states that only the members of a group view install the
corresponding view.

Validity2: if an agent aj∈vi
n and aj∉vi

n-1 then aj asked to join

the group g.

Validity3: if an agent aj∉vi
n and aj∈vi

n-1, then aj asked to leave

g or it has been suspected of crashing by some group member.
ii. View Liveness Properties

Termination1: If an agent a ∈vi
n asks to leave g or crashes

and there exist at least two correct agents in vi
n , then there

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

59

will be a view vj
n+1 installed by an agent aj, such that a ∉ vj

n+1

and a ∈vj
s for all s such that k ≤ s < r.

Termination2: If an agent a tries to join g, then there will be a

view vj
r installed by an agent aj, such that a ∈vj

r and a ∉vj
s for

all s such s < r.

The advantages of group communication layer in building
replication [11][12]:

i.A process does not (attempt to) track whether other processes

are alive or not, as this job is done transparently by the
underlying membership service.

ii.Each process is confident that its own perception of the
membership is identical to that of all other (non-crashed)
view members.

iii.Taking the leader over does not require a dedicated protocol
for figuring out which updates have been carried out so far: it
simply requires electing a new leader. Even if the leader
crashed while sending an update, it is guaranteed that either

all surviving backups received the update, or none of them
did.

iv.When the leader is taken over, the new leader does not
worry about whether the backups will receive new updates
after or before observing the left of the previous leader. It is
guaranteed that messages sent after a certain view change
will be delivered everywhere after that view change (if
delivered at all).

4. PROPOSED SYSTEM MODELING
In section 2 we introduced the desired properties for fault
tolerant mobile agent execution, exactly-once and non-
blocking, and also the mechanisms used to fault tolerant the
mobile agent, check-pointing and replication, which achieves

one property and suffers from the other or suffers from total
failure as mobile groups mechanism. Also the properties of
group communication middleware and its usefulness in
building replication are mentioned in section 3. Using the
group communication middleware to fault tolerant mobile
agent execution in our proposed system aimed to achieve the
two desired properties, exactly-once and non-blocking. Group
communication supports replication (non-blocking) when

crash occurs, also it always executes the group leader agent
only (exactly-once). Group leader is the oldest member in the
group (current group view).

4.1 System model and architecture:
The architecture of the proposed system is shown in Error!
Reference source not found.. The system is built upon

the mobile agent computing network and provides group
communication services and reliability for mobile agent

applications. There are three components in the system: (1)
membership protocol, (2) election mechanism and (3) failure
detection mechanism.

Fig 1: System Architecture

4.1.1 Membership Protocol:
A mobile agent may become a member of or depart a group
by issuing a JOIN/LEAVE request. It is assumed that mobile
agents leave the group due to crashes. At the point of
interaction between mobile agents and the membership
protocol, there are two different operations as follows:

Join operation: A mobile agent wishing to become a group

member constructs a JOIN message. Then mobile agent request
an update message from group to update its state and data to
the state and data of group

Abnormal leave operation: When the failure detection

mechanism finds that a mobile agent is suspected to crash, this
agent is deleted from group message list and the group will not
send any messages to it.

4.1.2 Election Mechanism:
There are many algorithms to elect a leader but here the
simplest leader election algorithm are used, this algorithm
based on selecting the oldest active member in group to be the
leader. Election Algorithm properties:

Safety: the elected agent=ai, where ai is chosen as the non-

crashed agent at the end of the run with the smallest identifier
(oldest member in the group (current view)).

Liveness: if the agent ai is the oldest member in the current

view and elected ≠ ai, then ai crash.
The election algorithm used here is bully algorithm. The bully
algorithm is a method in distributed computing for
dynamically selecting a coordinator by process ID number.
When a process P determines that the current coordinator is
down because of message timeouts or failure of the
coordinator to initiate a handshake, it performs the following

actions:

P broadcasts an election message, inquiry, to all other

processes with its time.

If P hears from no process that it is older than P, it wins the
election and broadcasts victory.

If P hears from a process that it is older than P, P waits a
certain amount of time for that process to broadcast itself as
the leader. If it does not receive this message in time, it re-

broadcasts the election message.

If P gets an election message, inquiry, from another process

with a time smaller than its time, it sends an "I am alive"
message back and starts new elections.

If P receives a victory message from a process with a time

smaller than its time, it immediately initiates a new election.

This is how the algorithm gets its name; a process with older
time will bully a newer time process out of the coordinator
position as soon as it comes online. The election mechanism
takes 10 seconds approximately until leader elected depends
on number of group members.

4.1.3 Failure Detection Mechanism:
The failure detector is equipped to all group members. Failure
detection is based on check-alive messages that keep
executing continuously. Agents call each other with check-
alive message, when the agent doesn’t receive a replay from

an agent this agent is marked as crashed. Failure mechanism
distinguishes between leader crash and any other group
member crash. If the crashed agent is the leader, the failure
detection mechanism calls election mechanism to elect new
group leader. If any other group member crashes nothing is
done until the number of agents per group reaches the critical

number =2, then the failure detection mechanism calls the
membership protocol to create and join new agents; so this
algorithm can prevents total failure case.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

60

5. THE PROPOSED SYSTEM DESIGN
Before describe the algorithm design, some terms used with

the algorithm must be defined:

Create: Create an agent

Join: Join the agent to the group.

Multicast: Multicast the agent data to all group members to

update their data version.

Execute: Execute the agent application.

Move(l): Move the agent to location l in the itinerary.

When the agent moves from stagei to stagei+1, the next place
in the itinerary, the leader does the following tasks:

Send the agent to the next stage in the itinerary.

Create new group in the next stage in the itinerary.

Delete the previous stage group.

In this section the two scenarios for failure models are
described which using in implementing the proposed system.
The first scenario is dealing with the case of no failure occurs
and the other scenario considers the case with a failure. The
second scenario includes three different failure models. These
models are:

i.The leader of group crashes.
ii.Non- leader member crashes.
iii.A hybrid model, where any member crash leader or not.

5.1 No Failure Scenario:
The steps of the algorithm in the failure free case works as
following:

1.Leader agent of stage si travels to stage si+1 as in Error!
Reference source not found..
2.The leader agent at stage si, the first and only agent at si+1,
creates other agents at stage si+1according to maximum

number of group members as in Error! Reference source
not found..

Fig 2: Group Construction

3.After creation of agents, the new agents update their data

from the leader of group at si as in Error! Reference
source not found..
4.At stage si+1agents construct and join group, each member
in this group must has the same state, and group members
must be greater than minimum number of group members (K),

the minimum number = 2.
5.Delete the group at si.
6.Elect the leader of group which is the oldest one in the
group.
7.The leader agent performs the application.

8.The leader agent sends (Multicast) update message with the

new agent data to all group members, as in Error!
Reference source not found..

Fig 3: Multicast the agent after group construction

Fig 4: Multicast the agent after agent execution

9.After the leader of the group completes its job at this stage,
then
a)If this is not the last stage the leader agent requests to move

to the next stage in itinerary, as in Error! Reference
source not found..
b)If this is the last step the leader agent returns the application

result to the application caller.

Fig 5: Agent travels to next stage in itenrary

5.2 Failure occurrence Scenarios:
Any group member can leave the group by executing leave
operation or crash. The worst case is happening when all
group member’s crash. If this happens we get the total failure

case that causes the group to disappear. Reaching this case
will not enable the algorithm to continue and we must restart

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

61

the system. To overcome this case, [13]discusses a method to
store the state of current group member in a stable storage.
But in our proposed system we limit the minimum numbers of
group member to two members, critical number of group
members, to prevent total failure. Failure models covered in
the proposed system:

5.2.1 When the group leader crashes:
When the leader crashes, the failure detection mechanism

recognizes the change. So failure detection mechanism calls
the Leader election mechanism to elect a new leader of group
and inform the group members with the new leader. Then the
new leader continue the execution, but if the number of active
group members is equivalent to the critical number of group
members then the leader must create new members to avoid
total failure case. Leader crashes in one of the following
cases:

a)Before agent execution, so the new leader will execute the

agent, as in Error! Reference source not found..
b)During agent execution, so the new leader will execute the
agent from scratch, discarding the execution done by crashed

leader, as in Error! Reference source not found..
c)After execution but before sending the new agent data to
other members, so the new leader will execute the agent from

scratch, discarding the execution done by crashed leader, as in

Error! Reference source not found..

Fig 6: Leader crashes before update message

d)After update the agent to all members but before sending to

next stage, so the new leader will transmit the agent, as in

Error! Reference source not found..
e)During transmission, after updating the group members, so

the new leader will retransmit the agent, as in Error!
Reference source not found..

Fig 7: Leader crashes after update message

5.2.2 When a Non-leader group member crashes:
When any member of group crashes except leader the failure
detection mechanism knows that the crashed agent isn’t the

leader and informs the other members in the group. Since the
leader is not allowed to crash, The leader continue the

execution regardless the changes, as in Error! Reference
source not found. and Error! Reference source not
found., unless the number of active group members is

equivalent to critical number of group members then the
leader calls the membership protocol to create new agents
reaching the maximum number allowed of the group and this
agents join the group to avoid the total failure case and to
achieve fault tolerance at any number of crashes then the

leader continue performing the application as in Error!
Reference source not found..

Fig 8: Non-leader agent crash and K>2

Fig: 9 Non-leader agent crash and K=2

Fig: 10 Joining new agents to group when K=2

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

62

5.2.3 When any member in group member

crashes (Hybrid case):
When any member of group crashes the failure detection

mechanism knows and distinguishes the crashed agent is the
leader or not and informs the other members in the group. If
this crashed agent isn’t the leader, the system acts as
explained above when a non-leader agent crashes. Else if the
crashed agent is the leader agent the, the system acts as
explained above when leader agent crashes.

6. IMPLEMENATION AND RESULTS
The protocol just described had been implemented in a
JAVA/Windows environment. The experimental environment
consisted of Intel Core 2 Duo Processor T5470, 2MB L2
cache, and 800MHz FSB, and 2 GB RAM computer. Our
experiments are conducted by implementing agent code using

the mobile agent environment JADE [14].In this section we
present the experiments we applied in our implementation to
evaluate the efficiency of our proposed algorithm. This
evaluating we calculated the complete task execution time and
the system reliability based on different scenarios. In These
scenarios we compute the effect of changing different
parameters such as group members’ size and failure rate on
both the agent round-trip execution time and the system

reliability. Reliability in our experiments is measured by
applying the exponential reliability function:

Reliability = 𝑒−(
𝑡𝑖𝑚𝑒

𝑀𝑇𝐵𝐹
)
MTBF=

1

𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑟𝑎𝑡𝑒𝑒

Where *MTBF: mean time between failures.

In our implementation we assumed that the Number of stages
of the mobile agent itinerary is 4. An agent placed at the caller
agent place stage, called controller agent, is responsible for
transmitting agents when agents start roaming the network for
results. At last stage, the leader agent is responsible for
sending the results to caller agent when the agent job is done
at all stages in the itinerary. The critical number of group

members is 2, so at each stage the number of group members
is greater than 2.The maximum number of the group member
is equal to 10, to check the agent survivability in case of
failures. When the total number of group members is equal to
the critical number, the algorithm automatically adds new
members to the group according to maximum number of
group in this case to overcome total failure case. Failures are
injected into each stage by creating a daemon that runs

together with the agent code. The daemon will randomly kill
one of the members of the agents group. For a proper test of
the algorithm, we run the experiment for three different
Failure models, Hybrid failure model, Leader failure model
and None-Leader failure model. In the first, all group
members are allowed to fail (including the leader). In the
second, only the leader is allowed to fail. In the third, only no-
leader is allowed to fail.

6.1 Effect of failure rate on the agent

round trip execution time
For each of the previous models, the effect of changing the
mean time between failures occurrence (MTBF) on the round
trip execution time is measured and evaluated. Figure 11
shows this effect:

a.In the leader failure model case, for any group members
number the round trip execution time decreases as a result of

increasing the mean time between failures (MTBF) as in

Error! Reference source not found. upper line. For

example, in case of MTBF=5 the leader crash every 5 seconds
that will lead to extra time consumed in the leader election
process (10 second approximately). This extra time happens
every 5 seconds which cause a significant increase in
execution time, however the proposed algorithm can

overcome this situation and complete its task successfully. As
the MTBF increases the failure rate decreases and the extra
execution time decreases. In case of MTBF = 60 seconds the
system performed as the failure free case; because the time
between failures becomes approximately equal to the time
elapsed for executing the task.

Fig 11: Execution Time with different MTBF

b.In hybrid failure model case, for any number of K (number

of group members) as MTBF is increasing the agent round

trip time decrease as in Error! Reference source not
found. second line. For example, in case of MTBF=5 there

are a member crash every 5 seconds. If this member is leader
that means there are an extra election time (approximately 10
sec) every 5 seconds which leads to significant increase in
execution time. If the crashed member is not leader and K>= 3
(minimum number of members in group) the system will
continue without any time increasing despite the presence of
failures .if this member is not leader and K <3 the system will
create new group members until reach the group maximum

number of members and join them to the group to overcome
any other failures that can occur. As MTBF increases, the
round trip execution time increases by an amount less than the
time needed with leader failure model. When MTBF =60, the
model acts as a fault free model because the time between
failures becomes approximately equal to the time elapsed for
executing the task.

c.In the non-leader failure model case, for any number of K
when increasing MTBF the round trip time decreases as in

Error! Reference source not found. third line. For

example, in case of MTBF=5 there are a non-leader crash
every 5 seconds that means non-extra election time needed. If
K >= 3, the system will continue ordinary despite the presence
of failures. But if K <3the system will regenerate the group to
overcome any other failures occurrence. The model acts as a
fault free model because no extra election was needed,
however a creation time is added when K < 3, and this time is

a small amount of time.

As a conclusion, in the previous three failure models, both the
exactly once and non-blocking properties are achieved.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

63

6.2 Effect of number of agents per group

on the agent round trip execution time
Any group should at least 3 members and not more than 10
members. Figure 12 shows the results measured by evaluating
the effect of changing the number of agents per group on the
round trip execution time:

a.For leader failure model case, failures are allowed only for
leaders. Any number of group members can overcome crash
and complete the task, as shown in the lowest line in Figure

12.

b.For Non-leader failure model case, the leader is not allowed
to fail so in case of low K and high failure rate; failure cannot
be tolerated, as shown in the middle line in Figure 12. As the
failure rate decrease and consequently MTBF increase the
system becomes able to overcome the presence of failures. In
this case, six is the minimum k that enables the system to

tolerate faults when the MTBF is five. As MTBF increases the
number of group members decreases until reaching the
minimum number.

 Fig 12: Minimum number of agents per group at each
MTBF

For hybrid failure model case, failure is allowed for all group
members; the low and high failure rate will not help in

tolerating failures, as shown in Error! Reference source
not found. the upper line. As the system starts work, eight

is the minimum k that enables the system to tolerate faults
when the MTBF is five. As MTBF increases the group

number decreases until reach the minimum number.

From Error! Reference source not found. we notice

that the intersection point between all failure models is
happened at MTBF =15 sec, and this time is greater than the
time needed for election. So, having a MTBF greater than the
time for election will lead to complete the task successfully
and reliably with the minimum number of group members.

6.3 Group members creation time effect
In this subsection we show how would the time needed for
creating groups is affected by increasing the number of

groups. As shown in Error! Reference source not
found., Group creation time increases slightly with the

increasing the number of group members. with the maximum
number of group members (10) the creation time needed still
less than 1 sec. as a conclusion, the group creation time
dramatically does not affect the total execution time because it
increases by a small fraction with the increase in number of
agents per group.

Fig 13: Group Creation Time

6.4 Effect of MTBF on reliability
For each of the previous models we measure and evaluate the
effect on reliability when changing the mean time between
failures occurrence (MTBF). In The following figure:

Fig 14: Average System’s Reliability

As shown in Error! Reference source not found.,
reliability improved at every point from its preceded as time
increases, also it shows that in the three failure models, leader
failure, non-leader failure or hybrid case, the reliability values
are close to each other at any MTBF; this means that our

system was not affected significantly with which agent
crashed because it deals with almost all failure models in the
same way. When the reliability is approximately equal to zero
this means that our algorithm completes its task but the extra
time needed to complete the agent task and ensuring the
reliability properties is very large amount of time.

6.5 Multiple stages in the itinerary effect
Simply in all the experiments we assume that the number of

stages in the itinerary is four stages. Error! Reference
source not found. shows that the system enables mobile

agent to achieve its task reliably, exactly-once execution and
blocking is not occurred, in multi stages up to 17 stages in the

itinerary as tested. Error! Reference source not
found. also shows that the execution time increases linearly

with the increase of the itinerary path; that means this time
depends only on the time the agent consumed in each stage in
the itinerary and movement time.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

64

Fig 15: execution time with multiple stages in itinerary

The time needed for our reliability system is constant in each
stage which consists of time consumed by membership
protocol which responsible for constructing the group

members and time needed by election mechanism until
producing the group leader.

6.6 Various applications effect
The application used in experiments is a searching
application, search for a book with the lowest price in many
serves then sell it. Also we tested the system with another
application which increments a number in each stage of the
itinerary and get the last number after the journey .In both

applications we get the same extra time needed for our
algorithm with both applications; this time is the time for
membership protocol and election mechanism. And this
indicates that the time needed for implementing our algorithm
with any mobile agent application in each stage depends only
on number of agents per group and the used election
mechanism, and this time independent of itinerary path stages
or application type or time.

7. CONCLUSION
In this paper, a new design method based on using group
communication services was presented to solve the design
problem of achieving reliable Mobile Agents systems using
group communication services. Reliable systems would be
achieved by validating two properties, the exactly one
property and the none-blocking property. The methods were

tested for cases of failure free and failure occurrence. The
failure free case was introduced and implemented to enable us
to compare it with the failure occurrence case. As a future
work there are three lines can be considered. The first line is
to consider another leader election algorithm instead of the
bully algorithm. The effect of changing the election algorithm
may minimize the time taken to elect a leader in case of
failures. The second line is to use a failure model other than

the crash stop failure model. For example, crash recovery
model may be used where stopped agent may restart either in
determined or non-determined period of time to rejoin the
group and this of course may cause dangerous effect on the
results. The final line is to study the effect of the proposed
work when dealing with non-trusted agents.

8. REFERENCES
[1] Peter Braun, and Wilhelm Rossak.Mobile Agents Basic

Concepts, Mobility Models, and the Tracy Toolkit. s.l. :
Morgan Kaufmann, 2005. 1558608176.

[2] A dynamic approach to reliable mobile agents systems
using group communication services. Alaa Eldeen Sayed
Ahmed, Rania Ramadan Abd El-dayem. 2009. Signal
Processing and Information Technology (ISSPIT), 2009
IEEE International Symposium on. pp. 71 - 76. 978-1-
4244-5949-0.

[3] Tradeoffs in implementing primary-backup protocols.
Navin Budhiraja, Keith Marzullo. 1995. Parallel and
Distributed Processing, 1995. Proceedings. Seventh
IEEE Symposium on . pp. 280 - 288. 0-81867195-5 .

[4] Using active clients to minimize replication in primary-
backup protocols. Daniel J. Rosenkrantz, S.S. Ravi
Parvathi Chundi, Ragini Narasimhan,. 1996. Computers
and Communications, 1996., Conference Proceedings of

the 1996 IEEE Fifteenth Annual International Phoenix
Conference on. pp. 96 - 102. 0-7803-3255-5 .

[5] Stefan Pleisch, Andr´e Schiper.Approaches to Fault-
Tolerant Mobile Agent Execution. 2001. p. 13.

[6] Design and Evaluation of a Fault-Tolerant Mobile-Agent
System. Michael R. Lyu, Xinyu Chen, and Tsz Yeung
Wong. 5, s.l. : IEEE INTELLIGENT SYSTEMS, 2004,
Vol. 19.

[7] Evaluation and Checkpointing of Fault Tolerant Mobile
Agents Execution in Distributed Systems. Hodjatollah
Hamidi, Abbas Vafaei, Seyed Amirhassan Monadjemi.
Isfahan, Iran : JOURNAL OF NETWORKS, 2010, Vol.
5.

[8] FATOMAS - A Fault-Tolerant Mobile Agent System
Based on the Agent-Dependent Approach. Stefan
Pleisch, Andr´e Schiper,. s.l. : IEEE Computer Society
Press, Conference on Dependable Systems and

Networks, 2001. pp. 215 - 224. ISBN: 0-7695-1101-5 .

[9] The mobile groups approach for the coordination of
mobile agents. Raimundo J. A. Macêdo, Flávio M. Assis
Silva. 3, s.l. : Parallel and Distributed Computing, 2005,
Vol. 65.

[10] GCS-MA: A group communication system for mobile
agents. Wei Xu, Jiannong Cao, Beihong Jin , Jing Li,
Liang Zhang. 3, Hong Kong, China : Journal of Network

and Computer Applications, 2007, Vol. 30.

[11] Group Communication: From Practice to Theory.
Schiper, Andr´e. Berlin - Heidelberg : J. Wiedermann et
al. (Eds.): SOFSEM, 2006.

[12] Dynamic Group Communication. Andr´e Schiper. s.l. :
Infoscience, 2003. Large Scale Distributed Systems -
ACM Proc of the European SIGOPS Workshop.

[13] Lampson, Butler W. Atomic Transactions. Computer

Science 105. 1981.

[14] JADE. [Online] http://jade.tilab.com/.

